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SPATIAL TRANSITIONS BETWEEN LOCAL

STRUCTURES IN CONDENSED SYSTEMS

SHALOM BAER*

Department of Physical Chemistry, The Hebrew University, 91904 Jerusalem, Israel

(Received 17 December 2003)

Scattering data and radial distributions in amorphous matter can be represented accurately in terms of models
based on a small set of structural elements which specify local atomic configurations, and on certain spatial
random processes specifying the fraction of such elements and the decay of their correlations with distance.
The local structural elements, expressed in terms of globally ordered structures, particularly in terms of lattices
ðLÞ, are subject to radially evolving Markoffian-like processes of relative displacements and of transitions
between Ls at different points in space. Including an empty lattice L0 in the set ðLÞ leads to a definition of
random voids and their spatial correlations, depending on the size of the local domains considered. The
models provide representation of a continuous range of amorphous structures from liquids and glasses via
nanomaterials to crystalline powders.

Keywords: Markov processes; Paracrystals; Free volume

PACS Nos: 61.20.Gy; 61.43.�j; 05.10.Gg

1. INTRODUCTION

Classical theories of liquids consider as their major goal to provide workable functional
relations between intermolecular potentials and molecular distributions. The standard
assumption is that one can express the latter with reasonable accuracy by effective
pair potentials. Yet, limitations on a full implementation of such a program lead natu-
rally to search for different characteristics parameters related to both structure and
interaction. In particular, the use of local lattice models [1–4] in conjunction with spatial
random processes [5–9] provides an efficient tool for accurate and consistent [10]
analytic representations of empirical structure functions of condensed disordered
systems. By defining parent ordered structures ðLÞ and specifying the random processes
by a small number of parameters ðDÞ, this approach provides a small set of parameters
(L;D) which completely determine all structural properties of the system and gives
a compact view of local atomic positions. Moreover, since the parameter values span
a low-dimensional ‘‘structure space’’ whose points represent real or virtual states
of the system, this can be used to advantage in following both macroscopic and
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microscopic changes along paths in the ðL;DÞ space. For example, given molecular
interactions, one can devise an extrapolation procedure of the energy of a disordered
structure to the energy of an ordered lattice structure L, enabling accurate evaluation
of corresponding lattice sums [11]. Furthermore, one can evaluate the entropy of a
disordered system [12] utilizing the Third Law, by following the entropy change
along a path from the disordered state ðL;DÞ to the ordered state (L)� (L, D¼0).
Thus, all thermodynamic properties of the system can be evaluated from structure
data and given molecular interactions. Of a central role in such calculations is the
radial distribution represented as a function of the parameter set, g(r)¼ g(r; L, D).
It can be utilized in any method which reduces contribution of higher order correlations
and many-body interactions to functionals of the pair correlations. Indeed, in evalua-
tion of the entropy from structure data [12], such a method was required to evaluate
spatial energy fluctuations. Another example is the embedded atom method [13,14]
where the electron density at an atomic site due to all other atoms is approximated
by a superposition of electron densities.

The random processes considered here are intended to produce radial pair distribu-
tions, hence are restricted to radially evolving Markoffian-like processes. Higher order
distributions can be derived from extensions of the Markoffian-like process to mullti-
theta (multi-Gaussian-like) distribution [15]. In previous applications the only spatial
random process employed was structural diffusion (SD) and modifications thereof
(see below). Yet, with hardly additional effort the model can be extended to include
also processes of structural transition (ST) between several local substructures [4]
L�, L�, . . . Such an extension, briefly sketched in [7], provides a reformulation of
frequently applied modeling of pairs distributions as resulting from a mixture of two
different local lattice structures (see e.g., references in [4]) in terms of spatial random
processes. It enables significant refinements leading to an accurate representation of
the scattering function S(k) over the entire k range, and relate the global spatial density
fluctuations, exhibited by nonzero S(0), to the structure parameters (L, D).

In the following we consider an extension including, beside a local lattice structure
L1, an ‘‘empty lattice’’ L0. With the random spatial processes involved this scheme
leads to a workable definition of a random excess volume, considered a characteristic
feature of amorphous structures. An excess volume has been dealt with by various
statistical theories, considering such entities as holes [16], cavities [17–20] (voids) in
liquids, free volume [21], or voids between atoms in glasses [22], distributed randomly
in space. Several such theories are based on assuming an underlying reference lattice
[23] serving to count different atomic configurations. However, the present approach
offers a procedure for extracting information on random excess volume directly from
structure data. Necessarily it depends on our choice of the underlying local lattice
L1, which reflects limitation on our ability to discern a global pattern in an ensemble
of local atomic configurations [12,24].

In Section 2 we outline the SD model. Section 3 deals with its ST extension and
consequent partial radial distributions. Section 4 specializes the foregoing results to a
system with random excess volume and leads to an analytic expression for its radial
distribution g(r). In Section 5 we present the corresponding expression for the static
scattering function, S(k), and consider the consequences of its analytic properties.
In Section 6 we consider several limit points of the model ‘‘structure space’’, including
the ‘‘ideal glass’’, nanomaterials, crystalline powder, and separate bulk phases. General
consequences of the program implied by the SDT models are summarized in Section 7.
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2. RANDOM DISPLACEMENT OF A LOCAL LATTICE

The model used, which was termed, following Frenkel [5], SD model, relates local
atomic configurations to a (virtual) lattice L, subject to random displacements,
s¼ s(r), in space. The local density, which for a given configuration of N particles,
rN� (r1, r2,. . . , rN), is given by

�ðrÞ � �ðr; rNÞ ¼
XN
i¼1

�ðr� riÞ, ð1Þ

is now approximated by

�ðrÞ ¼ �ðr; sÞ ¼
X
�, �

�ðr� a� � a� � sÞ, ð2Þ

where the double sum runs over all lattice points of L; the �-sum counts the position
vectors a� of the unit cells of L, and �¼ 1, . . . , n, counts the points a� inside one unit
cell. The average local density is

� ¼ h�ðr; sÞi ¼
1

v

Z
v

�ðr; sÞd3s ¼
n

v
, ð3Þ

where v is the volume of the unit cell of L. The random process s(r) is chosen to be a
radially evolving diffusion in the space of displacements {s} modulo in the unit cell
of L. Thus, given a pair of points in space, r1, r2, and the respective random displace-
ments, s1, s2, the conditional probability density function, P(s|r), for a relative displace-
ment s¼ s1� s2, (r¼ |r1� r2|), is assumed to obey for large r a diffusion type equation,

@P

@r
¼ Dr2

s P, ð4Þ

where D is a ‘‘structural diffusion’’ coefficient. Equation (4) is to be understood as
applying to large r, where the Markoffian assumption is valid. To allow for deviation
from a strictly Markoffian process for small r, we replace D by W 0(r), where W ¼W(r)
has the asymptotic forms

W � Dr, r ! 1; W 0ðrÞ ! 0, r ! 0: ð5Þ

The solution of (4), periodic in s, is given by

PðsjrÞ ¼
1

v

X
�

e�Wb2�eib��s: ð6Þ

Here the �-sum extends over all points, b�, of the reciprocal lattice L*. Clearly, (6) satis-
fies the boundary condition

PðsjrÞ ¼�ðsÞ, when W ¼ 0: ð7Þ
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Now (6) can be applied directly to evaluate the average

GðrÞ ¼h�ðr1Þ�ðr2Þi=�¼�gðrÞ, r 6¼ 0, ð8Þ

where G(r)¼G(r, t¼ 0) is the van Hove correlation function [25] at t¼0, and g(r) is
the radial distribution. Since G(r) includes also the self-correlations of particle densities,
the second equality in (8) holds strictly only for r 6¼ 0. Evaluating (8), we obtain

GðrÞ=� ¼ gðrÞ ¼ gðr;L,DÞ ¼
X
�

C�e
�Wb2� heWb��ri0, C� ¼

1

n

X
�

eib��a�

�����
�����
2

, ð9Þ

or alternatively, applying the Poisson sum transformation formula,

GðrÞ ¼ �gðr;L,DÞ ¼
X
�

1

n

Xn
�, �0¼1

1

ð4�WÞ
3=2

exp
ðr� a� � a� þ a�0 Þ

2

4W

� �� �
0

: ð9aÞ

The brackets hi0 denote averaging over all orientations of L, or of r. By (9), g(r) is an
analytic function (a theta-type series), depending on the parameter set (L, D). Clearly,
the series (9) is fast converging for large r (large W) whereas (9a) is fast converging for
small r. In (9a) G(r) is expressed as a sum of quasi-Guassian distributions centered
around the lattice points of L at positions a�þ a� relative to points a�0 inside one
unit cell, and averaged over all orientations of r (or L).

Expressions similar to (9a) (but not identical to it) have been repeatedly used [1,5,9]
to reproduce g(r) data. Expressions similar to (9) are used as well [2,3], mainly to obtain
good fits to scattering data in the low k range. However, presently we obtain two
equivalent representations of g(r) following general notions of random spatial processes
specialized to a radially evolving diffusion-like process, specified by a dispersion (width
function) W(r). For the numerical evaluation of g(r), the following specialization of
W(r) can be made: Because of exclusion effects, we expect g(r)¼ 0 to hold to a good
approximation within an entire domain 0� r� r0, where r0 is of the order of nearest
neighbor distance. This is achieved by choosing for W(r) a function which goes fast
to zero for r� r0. For practical reasons of analytic manipulation and of numerical
convergence at small r we choose for W the particular form

W¼W0 þDr0!
r

r0

� �
, W0=r

2
0 � D=r0 � 1 ð10Þ

where

!ðxÞ ¼ !1ðxÞ ¼ log cosh x: ð11:1Þ

Another form used for !ðxÞ was [8]

!ðxÞ ¼ !2ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
� 1: ð11:2Þ
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Both choices have the asymptotic form

!ðxÞ ¼
1

2
x2 þOðx4Þ, x ! 0,

but for x ! 1

!1ðxÞ ¼ x� log 2þOðe�2xÞ, !2ðxÞ ¼ x� 1þO
1

x

� �
: ð11iÞ

Both forms of !ðxÞ have the advantage over an earlier choice [26] in that the require-
ment of a positive scattering function [27,28], S(k)>0, is satisfied for all k, but
(11.1) has been found preferable since it produces a better fit to g(r) of the steep rise
at the small r side of the first peak. A plot of the two width functions, with the same
asymptote, are shown in Fig. 1. By (11i), for large r one has WðrÞ � Dðr� rcÞ, where
rc ¼ r0 log 2 or rc ¼ r0 for (11.1) or (11.2), respectively. When we put r0¼ 0 in (10),
we retrieve the simple law W¼ Dr.

A further generalization of (10), used in the following, is to replace the nonconstant
term by a sum of two or more terms, i.e.

W ¼ W0 þ
X
i

Diri!
r

ri

� �
, r1 < r2 < � � � ð100Þ

FIGURE 1 Radially evolving width functions (Eq. (11)) with a common asymptote.
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(See also [29].) By (11i), for r� r1 or smaller the i¼ 1 term dominates whereas for large
r, applying (11.1),

W � W0 þ
X
i

Diðr� rciÞ, rci ¼ ri log 2:

3. SPATIAL RANDOM TRANSITIONS BETWEEN LOCAL STRUCTURES

The accuracy of reproducing g(r) with the model representation (9) depends on the
degree of complexity of L, i.e. on the size of n. Clearly, by increasing n to a ‘‘macro-
scopic’’ value, say of the order of 103, the points in the unit cell of L become a repre-
sentative configuration in a typical computer simulation of a macroscopic system, in
particular in the reverse Monte Carlo procedure for reproducing empirical g(r) data
[30]. With the parameter D chosen to be very small, the terms on the rhs of (9a) are
reduced to practically �-functions and the double sum becomes g(r) of the simulated
macroscopic system.

However, by taking n to be large, we lose the advantage of an analytic representation
of g(r). Therefore one would desire to keep n small, say n<10. On the other hand, the
above model imposes an average density (3) fixed by L, and excludes the formation of
random excess volumes per atom over that of the average atomic volume (v/n) within
domains of a size of the order of a unit cell, or larger. To allow for the possibility of
random excess volumes within such domains, more general spatial random processes
must be considered. This is achieved here by including beside random displacements
s also transitions between different types of local structure. Thus, assuming several
possible local structures and associating again a lattice L� with a local structure of
type �, we can introduce an additional discrete, radially evolving, Markoffian process
defined by a set A¼ {A��} of transition probabilities (per unit distance) between differ-
ent local structures.

Formal complications in combining the continuous s-process with the discrete
A-process are avoided by taking all L�s to be commensurate, i.e. to have a common
Bravais lattice, differing only by their sets of points (að�Þ� , � ¼ 1, . . . , n�) within the
common unit cell. Thus s can specify a random relative displacement of any local struc-
ture irrespective of its type. A treatment of the case of incommensurate L�s is given in
the Appendix. Assuming the s and A processes to be mutually independent, we arrive
at a combined structural diffusion–transition (SDT) equation

@P

@r
¼ Dr2

s Pþ AP, ð12Þ

which is an extension of (4). Equation (12) has its analog in equations for temporal
reaction–diffusion processes. Here P, A, and D are l� l matrices, with l the number
of different local structures. The columns of P¼ {P��(s|r)} are the conditional probabil-
ities of finding at a distance r a local structure of type �, displaced by the amount s
relative to a structure of type � at the origin. A is a matrix whose sum of terms of
each column is zero: X

�

A�� ¼ 0: ð13Þ
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Putting P ¼ eAr �PP, (12) is reduced to the diffusion equation

@ �PP

@r
¼ �DDr2

s
�PP, �DD ¼ e�ArDeAr: ð14Þ

which has the solution

PðsjrÞ ¼
1

v
eAr

X
�

e�
�DDrb2�e

ibv �s

, ð15Þ

satisfying the boundary condition

Pðsjr ¼ 0Þ ¼ I�ðsÞ,

where I is the l� l unit matrix. In the following we employ the simplification of assum-
ing D to be a scalar, hence �DD ¼ D. By (13) A is a singular matrix whose eigenvalues are

	0 ¼ 0 > 	1 > � � � > 	l�1:

Consequently, we can write [31]

eAr � QðrÞ ¼ Iþ
Xl�1

i¼1

ðe	ir � 1ÞZi, ð16Þ

where Zi, i¼ 1, . . . , l� 1 are projection matrices (the ‘‘components’’ of A), Zi Zj¼ �ij Zi,
with each Zi satisfying also condition (13). The following calculations are restricted
to l¼ 2, i.e. two different L�s, �¼ 1, 2 (two ‘‘states’’). A has then the explicit form

A11 þ A21 ¼ 0, �A11 ¼ A21

A12 þ A22 ¼ 0; �A22 ¼ A12:

By detailed balance A12p2¼A21p1, hence

p2

p1
¼

A21

A12
or �A ¼

a2 �a1

�a2 a1

 !
; ða� ¼ 
ap�Þ ð17Þ

where p� is the probability of finding the local structure L� at an arbitrary point r. Thus,
A has the eigenvalues 	0¼ 0, 	1¼�a1� a2¼�
a, and the component

Z1 ¼ �
1


a
A ¼

p2 �p1

�p2 p1

 !
, ð18Þ
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hence, by (16) and (18),

QðrÞ ¼ Iþ ðe�
ar � 1Þ
p2 �p1
�p2 p1

� �
: ð19Þ

The elements, Q��(r), of this matrix are the conditional probabilities of finding a
local structure � at r, given a local structure � at the origin. Again, to allow for
deviations at small r from a strictly Markoffian process, we make a generalization of
Q(r), similar to the replacement of Dr by the function W(r) satisfying (5), to a matrix
having the asymptotic form

QðrÞ � eAr, r ! 1; Q0ðrÞ ! 0, r ! 0:

In the particular case of two ‘‘states,’’ the exponent 
ar in (19) is replaced by a function
w(r) satisfying the asymptotic form

w � 
ar, r ! 1; w0ðrÞ ! 0, r ! 0: ð5aÞ

Extending (2) to include several local structures L�, the local density for a given local
structure (L�, s) is given now by

�ðrÞ¼�ðr;�; sÞ ¼
X
�

Xn�
�¼1

�ðr� a� � að�Þ� � sÞ, ð20Þ

and the average density is

� ¼
X
�

p���, �� ¼
n�

v
ð21Þ

where �� is the average density of particles (points) in L�.
Similarly, extending (8) and (9) to several Ls, we obtain for the pair distribution

�2gðrÞ ¼ �2gðr;L,D,AÞ ¼
X
��

��Q��ðrÞp���ĝg��ðrÞ, ð22Þ

where

ĝg��ðrÞ ¼
X
�

��ðb�Þ�
	
�ðb�Þe

�Wb2� heib��ri0, ð23Þ

with

��ðb�Þ ¼
1

n�

Xn�
�¼1

eib��a
ð�Þ
� , j��ðb�Þj

2 ¼ C�, etc:
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By the Poisson transformation, (23) has the alternative representation

��ĝg��ðrÞ ¼
1

n�

Xn�
�0¼1

X
�

Xn�
�¼1

1

ð4�WÞ
3=2

exp �
ðr� a� � að�Þ� þ a

ð�Þ
�0 Þ

2

4W

" #* +
0

: ð23aÞ

��ĝg�� can be interpreted as the particle density at r, given the local structures L� and L�

at the origin and at r, respectively. As in the case of Eq. (9), Eqs. (22) and (23) apply
only to r 6¼ 0, since their rhs contains also contributions of self-correlations to the
pair distribution.

The more general treatment (see Appendix) allowing for different L�s to be incom-
mensurate, leads to the same results (22) and (23) except that the cross terms vanish,

ĝg�� ¼ 0, L�,L� incommensurate: ð23iÞ

4. RANDOM LOCAL VOIDS AND PAIR CORRELATIONS

The foregoing model enables us to define voids as a random excess volume, as follows:
Let L¼ (L1, L0) be a set of two local structures – a lattice L1 and the empty lattice L0

(where n0¼ 0, i.e. �0¼ 0), with the respective frequencies p1, p0. We have then �¼ p1�1,
with � the average density and �1 the density of structure L1. Writing

�1ĝg11 ¼ G1ðrÞ ¼ �1
X
�

C�e
�Wb2� he�ib��ri0, ð24Þ

we have

GðrÞ ¼ Q11ðrÞG1ðrÞ, Q11ðrÞ ¼ p1 þ e�wp0; gðrÞ ¼
1

�
GðrÞ; r 6¼ 0: ð25Þ

Hence, with p1¼ �/�1, p0¼ 1� p1,

�gðrÞ ¼ ½�þ e�w��
g1ðrÞ, g1ðrÞ ¼ G1ðrÞ=�1, r 6¼ 0: ð26Þ

where �� ¼ �1 � �. With v¼ ��1 and v1¼ ��1
1 the volume per particle in the given

system and in L1, respectively, �v¼ v�v1 is an average random excess volume of
voids defined with respect to the volume occupied by a globally ordered structure
(L1). Clearly, this definition of voids depends on the choice of L1, which reflects our
limited ability to infer a unique global pattern from local atomic configurations. The
ordered structure has no random excess volume, irrespective of the notions of excluded
volume of a particle or empty space between particles.

By (25), Q11(r) has the asymptotic forms

Q11ðrÞ ¼
p1, r ! 1

1, r ! 0
,

(
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and correspondingly, by (24) and (25),

G1ðrÞ ¼ �1; GðrÞ ¼ �, r ! 1;

G1ðrÞ � GðrÞ ¼ �ðrÞ, r ! 0;
ð27Þ

with the correct asymptotic behavior. Note that since �v>0, G<G1 for all r (where
g> g1), which means that in a system free of random voids (L1, D), the neighborhood
shell density G1(r) is larger than the density G(r) in a system with random voids (L1, L0,
D). Rewriting (26) in the form

G� � ¼ ð�þ��e�wÞðG1 � �1Þ=�1 þ��e�w, ð26aÞ

using the series representation

ðG1 � �1Þ=�1 ¼
X
�

0C�e
�Wb2� heib��ri0, ð9aÞ

with the primed summation sign denoting omission of the �¼ 0 term, we note that the
radial density distribution includes a continuous contribution ��e�w of void density
deficiency, beside the contributions of individual neighborhood shells.

In the following applications we assign to the A-process the same functional form
(10) of spatial decay as in the D-process, by putting

w ¼ 
ara!
r

ra

� �
: ð28Þ

The constant ra is a measure of an average size of domains with dominant L1 structure,
free of random voids. As seen from (26), since for r<ra w is small, approaching
zero when r ! 0, the neighborhood shell density approaches �1g1, whereas for large
r � ra, when w ! 1, this density approaches �.

Fitting (24) (via (26)) to experimental g(r) data requires now adjustment of the par-
ameters defining the lattice L1, and of four additional parameters, D, r0, 
a, and ra,
keeping fixed W0¼ 10�4. Resulting representations of g(r) for liquid Argon and
liquid Aluminum, obtained previously using (11.2) and a simple estimate of random
excess volume, consistent with limit values of the radial distribution, are given in the
respective Figs. 1 and 2 of ref. [8]. The corresponding relative excess volume (density
deficiencies), �v/v1, was, respectively, 12% (Ar) and 9% (Al) of the total volume,
where L was a lattice with n¼ 4 (the number of points per unit cell).

5. THE SCATTERING FUNCTION

Given G(r) via the analytic expressions (23) and (23a), the scattering function can be
evaluated numerically from

SðkÞ ¼

Z
ðGðrÞ � �Þeik�rd3r ð29Þ
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by fast Fourier transform (FFT). Note that for small r we have to use the representa-
tion (23a), and can replace the �¼ 0, �¼ �0, term by the correct �(r) function term of
self-correlations. It is represented to a good approximation by the former term [10],
which contributes practically the correct value unity to (29), with an error of order 1%.

Substituting (26a) into (29) and performing integration term by term, we obtain S(k)
as a series

SðkÞ ¼
X
�

S�ðkÞ, ð30Þ

where the terms

S�ðkÞ ¼

Z
ð�þ��e�wÞe�Wb2� heib�ri0e

ik�rd3r, � 6¼ 0, ð30nÞ

represent contributions of the respective shells of the reciprocal lattice L* to the scatter-
ing, and

S0ðkÞ ¼

Z
��e�weik�rd3r; ð30:0Þ

forming a background contribution to the scattering, is due to the random voids and
is proportional to their density deficiency ��.

By definition S(k) is a positive function of k. By construction (due to our choice of
functional form) this holds also for each term S�(k) in (30) (see [27,28]). Hence each
S�(k) can be viewed as an (unnormalized) distribution of k. Defining a composite
width function

�ðr; 
�, 
�Þ ¼
X
i


�iri!ðr=riÞ þ 
ara!ðr=raÞ, 
�i ¼ Dib
2
�, ð31Þ

with !ðxÞ given by (11), the integral

Iðk; 
�; 
aÞ �

Z 1

0

e��ðr;
�, 
aÞ cos kr dr, 
� � f
�1, 
�2, . . .g ð32Þ

is symmetric in k, peaked around k¼ 0 with a maximum I(0; 
�, 
a) and is integrable
over the entire range �1 < k < 1. When � consists of a single ! term, the integral
in (32) can be evaluated analytically [10]. From the inversion formula for (32),

e��ðr;
�;
aÞ ¼
1

2�

Z 1

0

Iðk; 
�; 
aÞ cos kr dk, ð33Þ

one can obtain the dispersion of k,

hk2i ¼

Z 1

0

Iðk; 
�, 
aÞk
2dk

	Z 1

0

Iðk; 
�, 
aÞ dk, ð34Þ
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using the relation

hk2i ¼ �
@2

@r2
e��ðr;
�, 
aÞ

	
e��ðr;
�, 
aÞ

� �
r¼0

: ð35Þ

In particular, substituting for !ðxÞ in (31) either (11.1) or (11.2), we obtain

hk2i ¼
X
i


�i
ri

þ

a
ra

: ð36Þ

It follows now from (30n) and (30.0) that the S�(k) can be expressed in terms of the
I(k; 
�, 
a). Writing

K�ðk; 
�, 
aÞ ¼ 4�
Iðk� b�; 
�; 
aÞ � Iðkþ b�; 
�, 
aÞ

2kb�
, ð37Þ

we obtain

SðkÞ ¼
X
�

0C�e
�W0b

2
� ½�K�ðk; 
�, 0Þ þ��K�ðk; 
�, 
aÞ
 þ��K0ðk; 0, 
aÞ, ð38Þ

where

K0ðk; 0, 
aÞ ¼ lim
b�!0

K�ðk; 
�, 
aÞ ¼
4�

k

@Iðk; 0, 
aÞ

@k
: ð39Þ

By the foregoing considerations we see from (37) that the K� terms in (38) contribute
to S(k) peaks around k � b� – the L* shell positions, with progressively increasing
widths (36) and decreasing heights, and the K0 term contributes an additional back-
ground distribution proportional to the density deficiency �� due to random voids.

Fitting S(k) data [32] for liquid Aluminum to the SDT model are shown in Fig. 2,
with the corresponding g(r), calculated directly from the analytic expressions (26),
given in Fig. 3. We have chosen a width function W with two terms in the (100) repre-
sentation, using the form (11.1) for !ðxÞ. Thus, the total set of adjusted parameters is
(D1, r1, D2, r2, 
a, {L}) where {L} is a set defining the unit cell of L, amounting to
3(nþ 1) parameters, where n is the number of points in a unit cell. (We have put
ra¼ r2 in order to introduce correlations between the A- and D-process). Several fitting
curves by simulated annealing, starting from an fcc L with n¼ 1, 2, 8, are shown in the
two figures. When n>1 there appear spikes in curves for S(k) in the small k range
k<kmax – position of the maximum of S(k), barely apparent in the data. These
spikes are an artifact of the model lattice sum representation of g(r), appearing when
the unit cell of L contains more than one point, which entails a unit cell of smaller
size than kmax for the reciprocal lattice L*. Negative values for the S(k) curves in this
range, where S(k) becomes very small, of the order of 10�2, are due to limitations of
the FFT procedure and should be absent from a more accurate numerical evaluation
of (29). The slight rise of S(k) towards k! 0 might have physical significance, as
found from careful analysis of scattering data in this region [33].
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Another discrepancy is an increasing mismatch and phase shift of the oscillations in
the high k range. It seems that the oscillations beyond the first peak of S(k) are mainly a
consequence of the steep drop of g(r) to zero at small r, due to the strong short range
repulsive forces, and that both the shift and damping of the oscillations in the model
S(k) reflect a failure to reproduce a sufficiently sharp drop in g(r).

The resulting fractional excess volumes, �v/v1¼��/�, for 3Ls are as follows: 20%
(n¼ 1), 12% (n¼ 2), 9.4% (n¼ 8), showing approach toward a more ordered structure
with increasing n, illustrating the dependence of our definition of random voids on the
choice of the ordered reference structure, with a more complex L approaching more
closely that of the modeled disordered system (the liquid). An extreme example is a
lattice with a huge unit cell (N� 103�104) produced by the reverse Monte Carlo
method. Note that compared to the solid Al crystal, the liquid volume is larger by
14.3% [32], implying that the liquid model lattice L (n¼ 8) is expanded compared to
Lcr – the crystal lattice.

6. LIMIT POINTS IN STRUCTURE SPACE

Consider now the limit D! 0, when the D-process has only a small effect, while
keeping the A-process, i.e. 
a 6¼ 0. As seen from (23a), g(r) becomes a sum of sharp
peaks with equal dispersion W0, situated at the neighborhood shell positions of L1.

FIGURE 2 S(k) of liquid aluminum. Circles: experimental points; solid line: L (n¼ 8); dashed line: L (n¼ 1)
(see text).
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This corresponds to long range order in a crystalline powder. However, because of the
A-process the average shell density decreases from �1 to � with increasing r, at a radial
rate 
a, as can be seen from (26a). In contrast, the peaks in S(k) have a
nonzero dispersion 
a/ra as long as ra<1, i.e. as long as the size of the coherently
diffracting domains is finite.

Writing (26a) as

G� � ¼ ð�=�1ÞðG1 � �1Þ þ�G, �G ¼ ð��=�1Þe
�wG1,

we see that the incremental contribution �G to G(r) leads to a corresponding contribu-
tion to S(k). Putting !ðxÞ � x, we obtain for small k

�SðkÞ ¼ 4���
a
X
�

0e�W0b
2
�

C�

½
2a þ ðb� � kÞ2
½
2a þ ðb� þ kÞ2

þ

1

ð
2a þ k2Þ2

" #
: ð40Þ

It consists of broadened peaks of effective width 
a at the neighborhood shells of the
reciprocal lattice L	

1, and an additional background distribution around the origin.
All are proportional to ��, thus due to the random voids trapped in an otherwise
crystalline structure. The effect of void distribution can be compared to a background
contribution due to a finite size 
�1

a of the crystals to the scattering [34].

FIGURE 3 g(r) of liquid aluminum from fitting to S(k) data. Solid line: L (n¼ 8); long dashed line:
L (n¼ 2); dashed line: L (n¼ 1) (see text).
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One could associate the D! 0 limit with an ‘‘ideal glass’’ state [35], which is a state
implied by extrapolation from a sequence of glass samples formed by increasingly slow
cooling rates of a supercooled liquid. Such a state might correspond to a distribution of
crystallites whose average linear size is of the order of 
�1

a , while the space between the
crystallites makes the excess volume, given by the relative density deficiency ��=�.

In the liquid state, where ra
a>1, the concept of micro-crystallites (or para-crystals
[9]) looses its meaning as extended ordered sets of atoms and should be understood only
as reference structures for the relative positions (distances, bond and plane angles, etc.)
of neighboring atoms. Accordingly, D and 
a refer to suitably averaged local atomic
configurations. As mentioned above, the relative density deficiency ��/� can still
serve as a measure of the fraction of random voids in the liquid, but depends on the
choice of the reference structures.

7. CONCLUDING REMARKS

Parametrized analytic representations of molecular correlations serve as models
enabling analysis of relationships between structure and macrostates of the system.
The models developed in the foregoing have two essential ingredients: a small
number of local structure elements, and spatial random processes specified by a
small set of parameters defining the correlations between these elements. The two
parts are intimately connected: The definition of the correlations between structure
elements at different localities implies that full correlations correspond to global
(macroscopic) order. This is indeed obeyed in the foregoing examples. For local lattices
L related by a relative displacement s, the formation of global order (i.e. crystallization)
results from full coherence throughout space between local structures, corresponding
to D¼ 0. For several different types of local lattices related by transition probabilities,
full correlation corresponds to 
a¼ 0 in (17), i.e. zero transition probabilities, which
implies that the system contains macroscopic regions, each consisting of a single lattice
structure. Any other conceived local elements not related to lattice structures, such as,
say, icosahedra, would require defining corresponding random processes conforming to
the above conditions. In the case of local icosahedral structures this turns out to be
possible by considering random displacements of a lattice in six-dimensional space [36].

The analysis of the relation between structure and disorder in condensed systems,
presented by the foregoing models, is incomplete, as follows from consideration of
entropy in terms of ensembles of energy states [12], requiring also knowledge of molecu-
lar interactions potentials in addition to pair distribution data.
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APPENDIX

Incommensurate Local Lattices

When several incommensurate local lattices L� are assumed, this requires redefining a
relative displacement s� for each L� with respect to a common reference lattice �LL, which
we choose to be a simple cubic lattice with unit length cell edges, as follows: Writing s�

in terms of the vectors defining the unit cell of L�, s� ¼
P3

k¼1 s
�
ka

�
k, 0 � s�k < 1, we

define the set �ss � ðs�1 , s
�
2 , s

�
3Þ as the Cartesian coordinates of the displacement inside

the unit cubic cell of �LL. Thus, the transformation formula from volume elements in
s� to �ss� is

d3s� ¼
@ðs�Þ

@ð�ss�Þ
d3�ss� ¼ detja�kijd

3�ss� ¼ v�d
3�ss�, ðA1Þ

where a�ki, i¼ 1, 2, 3 are the Cartesian coordinates of a�k.
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We now rewrite (20), the local density for a given local structure (L�, �ss), by

�ðr;�, sÞ ¼
X
�,�

�ðr� r��,�ð�ssÞÞ, ðA2Þ

where � runs over all cells and � runs over all atoms of type � in the unit cell of �LL, and

r��,�ðsÞ ¼ a��þ� þ s�: ðA3Þ

For the pair distribution

nð2Þðr1, r2Þ ¼ h�ðr1Þ�ðr2Þi

the average is now over all local states, ð�, �ss1Þ at r1 and ð�, �ss2Þ at r2. The local states are
correlated by the transition probability P��ð�ssjrÞ, �ss ¼ �ss2 � �ss1, which is the conditional
probability of finding at a distance r a local structure of type �, displaced by the
amount �ss relative to a structure of type � at the origin. Hence

nð2Þðr1, r2Þ ¼
X
�, �

p�

Z Z
d3s1 d

3s2 �ðr1;�, �ss1Þ�ðr2;�, �ss2ÞP��ð�ss2 � �ss1Þ

¼
X
�, �

p�
1

v�v�

Z Z
d3s�d3s�

X
��,��

X
��,��

�ðr1 � a��þ�� � s�Þ�ðr2 � a��þ�� � s�Þ

� P��ð�ss2 � �ss1jrÞ ðA4Þ

where

P��ð�ss2 � �ss1jrÞ ¼ Q��ðrÞ
X
�

e�W ðb
�
� Þ

2

eiðb
�
� �s

�
2
�b�� �s

�
1
Þ: ðA5Þ

We have assumed here, as before in Section 4, that the �ss process is independent of
the type of local structure. Performing integration and further averaging over all orien-
tations of r¼ r2� r1 and all positions in space of r1 (averaging symbolized by hi0,V ), we
obtain

nð2ÞðrÞ ¼
X
��

P�Q��ðrÞ
1

v�v�

X
�

e�Wðb
�
� Þ

2 X
��

X
��

eiðb
�
� �a

�
��b�� �a

�
� Þheiðb

�
� �r2�b�� �r1Þio,V ðA6Þ

Note that from each sum
P

� over cells, only the term for the one cell with the point r
inside it remains after integration. Here

heiðb
�
� �r2�b�� �r1Þio,V ¼ heib

�
� �rio

1

V

Z
eiðb

�
��b�� Þ�r1d3r1 ¼

sin b�� r

b�� r
�ðb�� � b�� Þ, ðA7Þ

STRUCTURES OF LIQUIDS AND GLASSES 365

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
4
6
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



where

�b ¼
0, b 6¼ 0

1, b ¼ 0

(
:

Hence, if the two lattices L� 6¼ L� are mutually incommensurate, all cross terms drop
except for the �¼ 0 term. Hence

nð2ÞðrÞ ¼
X
��

����Q��ðrÞ
X
�

��ð�Þ��ð�Þ	e�Wðb
�
� Þ

2 sin b�� r

b�� r
�ðb�� � b�� Þ ðA8Þ

where

�ð�Þð�Þ ¼
1

n�

X
��

eib
�
� �a

�
� , ��ð0Þ ¼ 1; etc:

Thus, for mutually incommensurate lattices cross terms � 6¼ � drop out from (A8).
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